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Motivation - Application Study

* VR/AR
e Enabling finer-grained hand control

* Sign Language Recognition and Translation
* Bridging deaf and hearing community
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https://en.wikipedia.org/wiki/Virtual_reality_game
https://vrscout.com/news/oculus-quest-hand-tracking-hand-throw/
https://en.wikipedia.org/wiki/American_Sign_Language

Potential Solutions & Problems

Cameras (Vision) Wearables (e.g., IMUs, Wrist bands)
* Well-built & high-quality datasets e Lack of datasets

* Sensitive to occlusions/lights * Not limited to occlusions/lights

* Privacy issues * Less concerned on privacy issues
* Portability Issue * Ubiquitous
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https://hackmag.com/coding/lets-code-for-leap-motion/
https://www.wired.com/review/tap-strap-2/
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Main challenges & solutions

* Labeled IMU data expensive to collect
- Self-supervised learning for effective representation learning

* Sensor data diversity across users, wearing locations, etc.
— contrastive learning along with data augmentations

« Commercial products are close-source & no access to raw sensor data
- Develop our own evaluation platform/prototype
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sSLOTR: Overall Workflow
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ssLOTR: Coordinate Alignment

1. Preliminary study shows same motion from different wrist
orientations results in different sensor readings.

a. Sensor readings from local frames

2. Transforming data to a consistent frame, e.g., from Local CF to
Global CF, and finally to Wrist CF

[Xwef  Yuer Zwer) = [Xi Yo Zi] ReingerRuyyiss

@ PennState



sSLOTR: STFT and Data Augmentation

* Short-Time Fourier Transform o g173
for capturing both time and Y
frequency domain information. 3o
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sSLOTR: Self-supervised learning framework

at the different stages.
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ssLOTR: Hardware
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Data Collection

e 12 users (8 males and 4 females)
e Leap motion as Ground Truth
e b sessions, 2 minutes each
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Results

* Tracking errors: 9.07 degrees and 6.55 mm
* Only 15% real data needed to finetune the model
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Results

* ssLOTR is stable across users and fingers (wrist)
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Results

True labels
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* sSLOTR for real-world applications
* ASL characters recognition (left) and VR games (right)
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Predicted labels
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Qualitative Results
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Discussion, Limitation and Future Work

* Form-factor improvement

* Lacking the ability to automatically learn data distribution from
* Finger motion speed
e Sensor noisy inputs

* Necessary Preprocessing
* Preprocess needed (e.g., WCF transformation, STFT, etc.)

* Human body pose detection using wearables
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Conclusion
* We present ssLOTR as the first self-supervised learning framework
3D finger motion tracking using IMUs.

* We also design an evaluation platform for efficient sensing and
comfortable wearing that enables dexterous motion of fingers.
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